Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Atheroscler Plus ; 52: 1-8, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2275722

ABSTRACT

Background and aims: HDL particles may act to buffer host cells from excessive inflammatory mediators. The aim of this study is to investigate if the lipid profile provides a prognostic biomarker for COVID-19 outcomes. Methods: This was a prospective study of the characteristics of 125 adult COVID-19 patients with a lipid profile performed on the day of admission analyzed with regard to clinical outcomes. Results: Seventy-seven patients (61.2%) were men, with a mean age of 66.3 (15.6) years. 54.1% had bilateral pneumonia. The all-cause mortality rate during hospitalization was 20.8%. We found a direct association between more severe disease assessed by the WHO classification, admission to the ICU and death with more pronounced lymphopenia, higher levels of CRP, ferritin (p < 0.001), D-dímer and lactate dehydrogenase (LDH) all statistically significant. Lower leves of HDL-c and LDL-c were also associated with a worse WHO classification, ICU admission, and death,. HDL-c levels were inversely correlated with inflammatory markers CRP (r = -0.333; p < 0.001), ferritin (r = -0.354; p < 0.001), D-dímer (r = -0.214; p < 0.001), LDH (r = -0.209; p < 0.001. LDL-c levels were significantly associated with CRP (r = -0.320; p < 0.001) and LDH (r = -0.269; p < 0.001). ROC curves showed that HDL [AUC = 0.737(0.586-0.887), p = 0.005] and lymphocytes [AUC = 0.672(0.497-0.847], p < 0.043] had the best prognostic accuracy to predict death. In a multivariate analysis, HDL-c (ß = -0.146(0.770-0.971), p = 0.014) and urea (ß = 0.029(1.003-1.057), p = 0.027) predicted mortality. Conclusion: Hypolipidemia including HDL levels at admission identifies patients with a higher risk of death and worse clinical manifestations who may require more intensive care.

2.
Open forum infectious diseases ; 9(8), 2022.
Article in English | EuropePMC | ID: covidwho-1970401

ABSTRACT

Background Excessive inflammation contributes to the morbidity and mortality of severe coronavirus disease 2019 (COVID-19) pneumonia. Recombinant human plasma gelsolin (rhu-pGSN) improves disease outcomes in diverse experimental models of infectious and noninfectious inflammation. Methods In a blinded, randomized study, 61 subjects with documented COVID-19 pneumonia having a World Health Organization (WHO) Severity Score of 4 to 6 and evidence of a hyperinflammatory state were treated with standard care and either adjunctive rhu-pGSN 12 mg/kg or an equal volume of saline placebo given intravenously at entry, 12 hours, and 36 hours. The prespecified coprimary outcomes were survival without major respiratory, hemodynamic, or renal support on Day 14 and the incidence of serious adverse events (SAEs) during the 90-day study period. Results All subjects receiving ≥1 dose of study drug were analyzed. Fifty-four of 61 subjects (88.5%) were WHO severity level 4 at entry. The proportions of subjects alive without support on Day 14 were 25 of 30 rhu-pGSN recipients (83.3%) and 27 of 31 placebo recipients (87.1%). Over the duration of the study, WHO Severity Scores improved similarly in both treatment groups. No statistically significant differences were observed between treatment groups at any time point examined. Two subjects died in each group. Numerically fewer subjects in the rhu-pGSN group had SAEs (5 subjects;16.7%) or ≥ Grade 3 adverse events (5 subjects;16.7%) than in the placebo group (8 subjects [25.8%] and 9 subjects [29.0%], respectively), mostly involving the lungs. Three rhu-pGSN recipients (10.0%) were intubated compared to 6 placebo recipients (19.4%). Conclusions Overall, subjects in this study did well irrespective of treatment arm. When added to dexamethasone and remdesivir, no definitive benefit was demonstrated for rhu-pGSN relative to placebo. Safety signals were not identified after the administration of 3 doses of 12 mg/kg rhu-pGSN over 36 hours. The frequencies of SAEs and intubation were numerically fewer in the rhu-pGSN group compared with placebo. Excessive inflammation contributes to the morbidity of COVID-19. In a placebo-controlled trial of 61 hospitalized subjects with severe pneumonia, adjunctive rhu-pGSN did not provide a statistically significant benefit although SAEs and intubations were numerically fewer in rhu-pGSN than placebo recipients.

3.
JCI Insight ; 6(1)2021 01 11.
Article in English | MEDLINE | ID: covidwho-1027164

ABSTRACT

Immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contribute to disease severity of coronavirus disease 2019 (COVID-19). However, the utility of specific immune-based biomarkers to predict clinical outcome remains elusive. Here, we analyzed levels of 66 soluble biomarkers in 175 Italian patients with COVID-19 ranging from mild/moderate to critical severity and assessed type I IFN-, type II IFN-, and NF-κB-dependent whole-blood transcriptional signatures. A broad inflammatory signature was observed, implicating activation of various immune and nonhematopoietic cell subsets. Discordance between IFN-α2a protein and IFNA2 transcript levels in blood suggests that type I IFNs during COVID-19 may be primarily produced by tissue-resident cells. Multivariable analysis of patients' first samples revealed 12 biomarkers (CCL2, IL-15, soluble ST2 [sST2], NGAL, sTNFRSF1A, ferritin, IL-6, S100A9, MMP-9, IL-2, sVEGFR1, IL-10) that when increased were independently associated with mortality. Multivariate analyses of longitudinal biomarker trajectories identified 8 of the aforementioned biomarkers (IL-15, IL-2, NGAL, CCL2, MMP-9, sTNFRSF1A, sST2, IL-10) and 2 additional biomarkers (lactoferrin, CXCL9) that were substantially associated with mortality when increased, while IL-1α was associated with mortality when decreased. Among these, sST2, sTNFRSF1A, IL-10, and IL-15 were consistently higher throughout the hospitalization in patients who died versus those who recovered, suggesting that these biomarkers may provide an early warning of eventual disease outcome.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , Biomarkers , COVID-19/genetics , COVID-19/therapy , Calgranulin B/genetics , Calgranulin B/immunology , Case-Control Studies , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Enzyme Inhibitors/therapeutic use , Female , Ferritins/genetics , Ferritins/immunology , Gene Expression Profiling , Humans , Hydroxychloroquine/therapeutic use , Immunologic Factors/therapeutic use , Interferon Type I/genetics , Interferon Type I/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lactoferrin/genetics , Lactoferrin/immunology , Lipocalin-2/genetics , Lipocalin-2/immunology , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/immunology , Middle Aged , Multivariate Analysis , NF-kappa B/genetics , NF-kappa B/immunology
SELECTION OF CITATIONS
SEARCH DETAIL